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Seismic wave propagation in fractured rock

Larry Myer
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ABSTRACT: The seismic displacement discontinuity model su
discontinuous in the plane of a fracture. Normal and shear displace
may occur in addition. The consequences of these assu
many, including frequency dependent amplitude and velo
generations of converted waves and waves trapped as inte
between parallel fractures. A number of these characteristic
on artificial and natural fractures. Field observations are

validity of the model at practical engineering scales.

INTRODUCTION

Rocks contain discontinuities at all scales from grain
boundaries and cracks at the microscale to joints and
fractures at the macroscale to faults at the mesoscale.
It has also been recognized for a long time that the
effect of these discontinuities, if averaged over some
volume, is a reduction in the stiffness of the rock.
From the theory of elasticity for a propagating
seismic wave, this reduction in stiffness translates
into a reduction in wave velocity. If discontinuities
are preferentially oriented in one direction the
average stiffness will be reduced more in one
direction than another, resulting in an effective
anisotropic medium. One of the important
characteristics of wave propagation in anisotropic
media is that a shear wave propagating at an oblique
angle to an axis of symmetry will be split into
components traveling at different velocities related to
the degree of anisotropy.  Thus, shear wave

splitting is often taken as diagnostic of fracture

orientation and density. These concepts constitute

the most common approach in seismic geophysics to
modeling wave propagation in fractured rock (e.g.
O’Connell and Budiansky 1974, Crampin 1981,
Hudson 1981, Thomsen 1996 and others).

A fundamental assumption in this approach is
that an appropriate sized volume can be defined over
which the effects of the discontinuities can be
averaged. This volume is normally defined by
wavelength, and it is argued intvitively that if
discontinuities are closely spaced compared to

pposes that displacements are locally
ments may be coupled and viscous loss
mptions on theoretically predicted wavefields are
city changes in transmitted and reflected waves,
rface waves on the fracture and guided waves
s have been observed in laboratory experiments
more limited but have provided evidence of the

wavelength then it is appropriate to use average
properties. It is also intuitive to believe that average
properties are not meaningful if the wavelength is
comparable to, or less than, the average spacing. In
this case, the discontinvity must be explicitly
modeled. With the advent of piezoelectric and other
sources in the kilohertz range, the latter condition is
frequently encountered in engineering practice.

~This paper will focus on the properties of the
seismic wavefield when discontinuities are modeled
explicitly. The result is a number of effects which
are not predicted by an averaging approach, and can
be used to better characterize fractured rock.

THE
MODEL

DISPLACEMENT  DISCONTINUITY

The reduction in stiffness of rock containing a
discontinuity arises from excess deformation
localized at the discontinuity.  Figure la is a
schematic illustration of the uniaxial loading of a
sample containing a discontinuity. Below is a
sketch ‘of the average displacement, measured
relative to the bottom rigid support. Displacement
increases linearly until, at the position of the
discontinuity, a local, step increase in displacement
occurs. This step increase in displacement, referred
to as a displacement discontinuity, is in excess to
that which would occur if the sample were intact, as
shown schematically in Figure 1b. Though the
displacement field is discontinuous, stresses, on
average, are continuous. As is well known,
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Figure 1. Definition of displacement discontinuity in
rock. a) Loading of a sample with a single fracture;
b) Left, displacement as function of position,
bottom as reference; Right, displacement
discontinuity as a function of far field stress.

(Goodman 1976, Bandis et al. 1983, Pyrak-Nolte,
et al. 1987) the magnitude of the displacement
discontinuity is a nonlinear function of stress. At
low stresses, there are few areas of contact between
the surfaces of a discontinuity. As stress increases,
so do areas of contact so that the displacement
discontinuity decreases. The tangent slope to the
stress displacement discontinuity curve is referred to
as the specific stiffness of the discontinuity.
Generalizing these ideas for dynamic loading
under shear as well as normal stress results in the

seismic  displacement discontinuity  boundary
conditions (Figure 2):
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u = particle displacement (u' - u" = §)
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Figure 2. a) Discontinuity; b) Elastic boundary
conditions; c) Kelvin rheologic model; d) Maxwell
rheologic model.

LII = superscripts referring to media above and
below discontinuity.

These boundary conditions apply over all scales
from micro to meso with the restriction that the
wavelength is long compared to the spacing between
the areas of contact in a discontinuity as well as the
size of these areas.

Another assumption in Eq. (1) is that the force
displacement relationship in the normal and shear
directions are independent. A situation in which this
might not be the case is one where the two opposing
surfaces of a discontinuity are very rough and
loaded in shear. This would result in
nonhomogeneous loading on the surfaces and
coupling between the normal and shear force
displacement relationship.  In this case, the
boundary conditions for a P- or S - wave become

1 It I I 1 il
(uz = U, )Kzz +(ux = Uy )sz =Ty Tax = Tix

I 1 [ 11 - | B | |
(uz — U )sz +(ux Uy )Kxx F U T =Ty

%
Solutions of the elastodynamic equations for
plane waves incident upon a discontinuity modeled
by Eq. (1) have been presented by a number of
authors (Schoenberg 1980, Pyrak-Nolte et al. 1990,
Gu et al. 1996a, and others). The solution
including cross coupling terms (Eq. 2) is discussed
in Nakagawa 1998 and Myer et al. 1998. Figure 3
presents results for the case of normal incidence in
which |T| is the magnitude of the transmission
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Figure 3. Magnitude of transmission and reflection
coefficients and group time delay for P-wave
normally incident upon an elastic interface with
cross coupled stiffness.

coefficient, [R] is the magnitude of the reflection
coefficient and t, is a normalized group time delay
for the transmitted wave. The parameter

_ 2K, /0

Zp

p

where

® = angular frequency

z, = pc, for P-waves

c, =+A+2U/p

p = density

A1 = Lame’s constants for media on either side of
discontinuity
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Plots are shown for a range, of the values of the ratio
K = x,/x,. For K = 0 the cross coupling stiffness
terms are zero, corresponding to the solution for
conditions given by Eq. (1).

Results in Figure 3 show that the seismic
displacement discontinuity model predicts that a
single joint or fracture should cause a frequency
dependent change in the amplitude and velocity of a
propagating seismic wave. High frequency
components of a wave are preferentially reflected.

Because the discontinuity is elastic, as described by~

Egs. (1) or (2), there is no energy dissipation;
energy is either transmitted or reflected. The curve
for t, implies that high frequency components are
slowed less than low frequency components.

The effect of nonzero cross coupling terms is to
generate converted waves. For the case of a
normally incident P-wave as shown in Figure 3,
transmitted and reflected S-waves are formed with
amplitudes which are frequency and stiffness
dependent. The negative values of t, in one panel
imply that, under some conditions, the P-wave
velocity could be increased.

Limiting conditions for the displacement
discontinuity model occur for specific stiffness
approaching zero or infinity. For k—0, the solution
reverts to that for a plane wave incident upon a free
boundary, and for K-> the solution is equivalent to
those of classical seismology in which both
displacements and stresses are continuous at the
boundaries between layers.

The elastic boundary conditions do not account
for energy dissipation which could occur due to
partial saturation or clay in the discontinuity. Two
very simple rheological models which also have
practical significance are the Kelvin and Maxwell

models. For Kelvin rheology Egs. (1) become:
1
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and for Maxwell rheology:
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C))
where
K = specific viscosity (units of viscosity per
length).




The magnitude of the transmission and reflection
coefficient for a normally incident wave are plotted
in Figure 4. The solution becomes equivalent to that
of the elastic interface when the specific viscosity

becomes large (e.g. z/2n = 0.01). When the
specific viscosity is small (e.g. 22 = 5), the
solution is dominated by the viscous element.
Thus, both [T} and [Rl  become frequency
independent.  Since energy is lost by viscous
dissipation at the discontinuity, [R[’ + [T|? # 1.

For oblique angles of incidence of P- or S, plane
wave, the displacement discontinuity model predicts
that converted waves will be generated even though
the material properties on either side of the
discontinuity are the same. Snell’s law defines the
relationship between the angles of incidence,
reflection, and refraction. For S, incident waves, a
critical angle exists above which transmitted and
reflected waves are no longer real valued.
Transmissions and reflection coefficients for oblique
angles of incidence have been developed by several
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Figure 4. a) Magnitude of the transmission

coefficient for normal incidence assuming Maxwell
rheologic model for boundary conditions; b)
Magnitude of the reflection coefficient.
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authors (Schoenberg 1980, Pyrak-Nolte et a. 1990,
Gu et al. 1996a and others).

It is well known that energy will propagate along
a free surface as a Rayleigh wave or, under some
conditions, along an interface between materials of
contrasting properties (Stoneley 1924). 1t is now
recognized that a discontinuity such as a fracture
will support an interface wave even though the
materials on either side of the discontinuity have the
same properties. Solutions for an inhomogeneous
plane wave propagating along a discontinuity
described by the elastic displacement discontinuity
model have been obtained by Pyrak-Nolte and Cook
1987, Gu et al. 1996b, Nihei et al. 1995 and
others, Two interface waves are predicted with
phase velocities which lie between the Rayleigh
wave and shear body wave velocities and are
dependent upon the specific stiffness of the
discontinuity. The particle motion of these waves is
elliptic and exponentially decays in amplitude with
distance from the discontinuity. These waves are
therefore known as  generalized Rayleigh
waves.Boundary element simulations for point
sources located on or near a discontinuity (Gu et al.
1996b) showed that an interface wave traveling at a
velocity close to the P-body wave should exist in
addition to the generalized Rayleigh waves.

Figure 5 presents waveforms for a cylindrical
source located on an elastic discontinuity of varying
specific stiffness. At very high stiffness, only a P-
wave is present, representing the response of the
medium without a discontinuity. As specific
stiffness decreases a generalized Rayleigh wave and
a P-interface wave develop.

Finally, Nihei et al. 1994 and Nihei et al. 1998
have shown that energy can be trapped as guided
waves between two fractures even though there are
no material property contrasts. A family of
dispersive trapped wave modes is predicted for each
value of specific stiffness. The modes have x-
component particle notion which is either symmetric
or antisymmetric with respect to the center of the
waveguide. Figure 6 shows particle motions for the
lowest order antisymmetric mode for two values of
specific stiffness of the discontinuities. For low
values of specific stiffness, most energy is trapped
between the discontinuities. As specific stiffness
increases, more energy couples across the
discontinuities indicating a transition to the bulk
body wave.

Neither interface waves nor guided waves are
predicted if the classical approach of replacing 2
fractured medium by effective anisotropic properties
is followed. If such waves exist in practice, they
could be diagnostic of fracturing at scales of interest
in many engineering projects. Observations of these
waves at laboratory and field scale is discussed
below.
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Figure 5. x and z components of particle
displacements for different values of fracture
specific stiffness from boundary element simulation.

LABORATORY MEASUREMENTS

The displacement discontinuity model for normal
incidence waves has been validated in laboratory
measurements on idealized fractures formed by lead
foil strips sandwiched between two steel cylinders
placed end to end (Myer et al. 1985). A reference
measurement was made in which a solid disk of the
foil was placed between the cylinders.  Strip
thickness (0.03 mm), width (1.0 mm), and spacing
(variable from 1 mm to 7 mm) were small compared
to wavelength (23 mm for P-wave at center
frequency). The strips were placed in parallel,
effectively forming a coplanar array of cracks
(Figure 7). For such a geometry analytic
expressions can be used to calculate the stiffness
and magnitude of the displacement discontinuity, 3,
(Tada et al. 1973, Myer et al. 1995 and others).
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Figure 6. Predicted mode shapes for the lowest
order antisymmetric fracture channel wave for ‘a
frequency of 1 kHz, P-wave velocity of 3118 m/s,
S-wave velocity of 1800 my/s; a) specific stiffness of

1 x 10°P/m; b) specific stiffness of 1 x 10'P,/m.

The “predicted” curves in Figure 7 were therefore
generated without “adjustable” variables. =~ The
magnitude of the transmission coefficient, IT|,as a
function of frequency, is uniquely determined from
the calculated stiffness. The product of T| and the
measured spectral amplitudes for the reference test
yields the predicted spectral amplitudes. It should
be noted that previous reference to these lead foil
strip tests (Myer et al. 1985 and Myer et al. 1995)
presented results for s-wave transmission which
were erroneously labeled as P-wave results.
Subsequent tests were performed in which lead
strips were used to form two parallel idealized
fractures. Results showed that, for widely spaced
fractures, the magnitude of the transmission
coefficient for a wave propagating across a set of
parallel fractures is |T N where ITI is the value for
a single fracture and N is the number of fractures
(Myer et al. 1995).

The displacement discontinuity model has been
used to successfully simulate laboratory P- and S-
wave transmission measurements on specimens
containing single natural fractures (Pyrak-Nolte et
al. 1990). The frequency dependent reduction in
amplitude of waves transmitied across the fractures
varied with the amount of normal stress applied to
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the fractures, reflecting the effect of changes in
specific stiffness as illustrated in Figure 1. Good
agreement between observed and modeled results
was achieved by using values of fracture stiffness of
the same order of magnitude, though somewhat
higher than those measured under pseudostatic
loading conditions. Elastic boundary conditions in
the displacement discontinuity mode} well simulated
P- and S-wave propagation across dry natural
fractures and P-wave propagation across water
saturated fractures. S-wave propagation across
water saturated fractures was better simulated by
assuming rheologic boundary conditions (Pyrak-
Nolte et al. 1990).

Evidence for the existence of converted waves
formed due to cross-coupling terms in the stiffness
matrix has been provided by laboratory tests by
Nakagawa 1998. A piezoelastic S-wave source was
placed at one end of a cylindrical granite sample and
a piezoelastic P-wave receiver at the opposite end.
The received waveform for the intact specimen as
shown in Figure 8a constituted a reference signal.
The sample was then fractured under Brazilian
loading creating a fracture perpendicular to the axis
of the sample. A shear load was imposed on the
fracture and the transmission experiment repeated.
Results (Figure 8b) show the arrival of a converted
P-wave which grows in amplitude as shear stress on
the fracture increases. The increasing shear stress
created an asymmetric loading on asperities of
contact in the fracture plane and, consequently,
cross coupled stiffness terms.

Fluids of differing chemistries and clay coatings
of differing mineralogy are ubiquitous in fractured
rock systems. The presence of these additional
components not only changes the stiffness of a
fracture but also can result in dissipation of energy.
Sudrez-Rivera 1992 and Sudrez-Rivera et al. 1992
explored the effects of clay coatings on propagation
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Figure 8. Waveforms from experiment
demonstrating stiffness crosscoupling; a) P-wave
receiver receiver response for intact sample; b) P-
wave receiver response for fractured sample with
shear stress applied to generate  first motion

indicated by arrows.

of S-waves across fractures and found that even thin
clay coatings can cause significant attenuation if the
clays absorb pore fluids, or, in civil engineering
terms, are prone to swelling behavior. He further
found that the displacement discontinuity model
incorporating rheologic boundary conditions well
simulated the result of laboratory experiments.
Figure 9 shows the results of the transmission and
reflection of an S-wave by a thin Na-
montmorillonite layer containing 27% water by
weight. The clay layer was about Spm thick and
was sandwiched between quartz disks. The
reference spectrum refers to the case when no clay
was present for the transmitted wave and a free
surface was present for the reflected wave.
Measurements were made at different levels of load
applied normal to the quartz disks confining the
layer. Experimental results were well simulated
assuming a Maxwell rheologic model in which
single values of specific stiffness and specific
viscosity were used to fit the transmitted, reflected
and viscous loss spectral data at each normal load.
Laboratory confirmation of the existence and
properties " of fracture interface waves has been
carried out by several investigators. Pyrak-Nolte et
al. (1992) placed two aluminum blocks together,
forming an interface or idealized fracture between
them. Both slow and fast interface waves were
observed. It was also shown, in accordance with
theory, that no interface wave is present for source
shear motion in the plane of the fracture (S, source).
In similar tests on rock fracture, Rayleigh-type
interface waves have been observed by Ekern et al.




70 T T ¥

Refere _
80 3
50 I
Na-Montmorillonite
; s 27% Water (by weight)
“ R Sduitd Maxwell Model
: 3.6 MPa",

a0

Spectral Amplitude [mVolts/256 polints]

70

1.2 MPa
2.4 MPa
3.6 MPa
4.8 MPa

Na-Montmorilionite
% Water. (by weight)
™" Maxwell Model —]

Spectral Amplitude {mVohs/256 points}

o 400 800 1200 1600 2000

05

04

03 Pa

Na-Montmorillonite -
27% Water (by weight)
Maxwell Model

02

0.1

Fractional Energy Loss

VISCOUS ENERGY LOSS
° 400 800 1200 1600 2000

0.1

Figure 9. Comparison of observed and predicted
amplitude spectra and energy loss for shear waves
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1995 and Roy and Pyrak-Nolte 1995. A
compressional-mode interface wave was observed
by Roy and Pyrak-Nolte 1997. Using a sheet of
Plexiglas containing a single idealized fracture, Fan
et al. (1996) confirmed particle motion patterns and
decay in amplitude away from a discontinuity as
predicted by theory. -

Nihei et al. (1998) have recently demonstrated at
laboratory scale the existence of trapped waves in a
channel formed by two fractures. Two parallel
fractures were generated in a 30.5 cm square by
1.05 cm thick slab of marble. A piezoelectric shear
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source was placed on the edge of the slab and
located midway between the fractures. Particle
motions were mapped on the surface of the slab and
are shown in Figure 10 a,b for two different levels
of normal stress across the fractures. The particle
motions are ‘consistent with the lowest order
antisymmetric mode (see Figure 6). At the higher
stress, Figure 10b, larger amplitudes were observed
outside the channel formed by the fractures, At the
higher stress, the specific stiffness of the fractures
was higher, allowing coupling of energy outside the
channel, in accordance with theory.
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FIELD OBSERVATIONS

A small scale cross-well test performed in basalt
provided some of the first evidence for applicability
of the displacement discontinuity model at field scale
(King et al. 1986, Myer et al. 1995). Measurements
were made between horizontal drill holes, labeled
Cl1, C2, C3, C4, as shown in Figure 11a, spaced
3m apart in the wall of a drift above the water table.
The primary fracture set as shown in the figure was
formed by the basalt columns which ranged in
thickness from about 0.2m to 0.4m. Crosswell
measurements were made with a 1.0m source and
receiver spacing. The effect of propagating across
the column-forming fractures is shown in Figure
11b, which presents first arriving P-wave pulses for
different borehole pairs. Pulses which crossed
column-forming fractures were slowed and
attenuated compared to those propagating along a
column, qualitatively in accordance with predictions
of the displacement discontinuity model.

Results of quantitative modeling of four of the
C2-C4 crosswell raypaths are shown in Figure 11c.
The modeling procedures consisted of first selecting
a reference pulse from the data set for the C1-C2
measurements. After transforming into the
frequency domain and correcting for path length and
intrinsic attenuation in the rock mass, this spectrum
was multiplied by the transmission coefficient
assuming elastic boundary conditions in the
displacement discontinuity model. The result was
inverse transformed to the time domain for
comparison with the observed pulses. The number
of fractures at each raypath location was held
constant (at 3) while fracture stiffness was changed
to obtain the best. fit with observations. The
stiffness varied between 1.0 x 10" and 5.0 x 10"
mPa/m units for the results shown. It is seen that
the simple elastic model captures quite well the
amplitude reduction, dispersion and time delay
experienced by the pulses which crossed the
fractures between C2 and C4.

More recent crosswell measurements in a shallow
fractured limestone formation provide evidence of
the existence of fracture interface waves at field
scale. A comprehensive set of high resolution (1 to
10kHz) crosswell measurements have been obtained
between five vertical wells (Majer et al. 1997).
Majer et al. also found that a single, strata-bound
vertical fracture with strike as shown in Figure 12a
intersected well GW-5. For source positions in
GW-5 an arrival corresponding to an interface wave

would be expected in GW-2, which is also located v

on, or immediately adjacent to, the fracture. The
arrival in GW-2 interpreted as the interface wave is
marked in Figure 12b. The delay time for this
arrival is also consistent with results of a theoretical
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Figure 12. a) Plan view of well locations; b) GW-5
to GW-2 crosswell results; arrow indicating arrival
of interface wave; c¢) GW-3 to GW-4 crosswell
results. .

model (see Figure 5) constructed with source
characteristics and rock properties relevant to the in-
situ test.

CONCLUSIONS

When the wavelengths are comparable to or less
than the average spacing of discontinuities it is no
longer appropriate to hverqge their effects on wave
propagation. The displacement discontinuity model
has been shown to capture many aspects of the
physics associated with the interaction of seismic
waves with individual discontinuities. Theoretical
studies have defined the transmission and reflection
characteristics of plane waves propagating across
elastic and rheologic discontinuities. Propagation
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parallel to discontinuities results in energy being
trapped as interface and guided waves. Such waves
are not predicted by effective media approaches.

. Laboratory studies have validated many aspects
of the displacement discontinuity model through
measurements of transmission and reflection of
plane waves incident on elastic and rheologic
discontinuities.  Laboratory measurements also
established the existence and properties of interface
and guided waves which had not previously been
redognized.

Field observations and applications of the
displacement discontinuity model are few. The
model  provides  potential  for  improved
characterization of fractured rock, but
implementation will require further development of
interpretational tools.
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